# Bye Ripples, Hi Fronkonstin

Nobody knows how to say goodbye, It seems so easy until you try (Nobody Knows, The Lumineers)

I have been user of WordPress.com for (almost) three years and it has been a very good experience. But I want to take more control of my blog: install plugins, manage ads (someone interested out there to publicize in my blog?) and place interactive charts in my posts instead static screenshots. This is why I opened a new blog called Fronkonstin (I love the name, no other reason) where I will continue publishing. I will maintain both blogs during some time (although Ripples will not be updated anymore). If you follow Ripples, please start following Fronkonstin. I promise I will try to do my best to continue making interesting experiments in this new era.

Thanks.

# Chaotic Galaxies

Tell me, which side of the earth does this nose come from? Ha! (ALF)

Reading about strange attractors I came across with this book, where I discovered a way to generate two dimensional chaotic maps. The generic equation is pretty simple:

$x_{n+1}= a_{1}+a_{2}x_{n}+a_{3}x_{n}^{2}+a_{4}x_{n}y_{n}+a_{5}y_{n}+a_{6}y_{n}^{2}$
$y_{n+1}= a_{7}+a_{8}x_{n}+a_{9}x_{n}^{2}+a_{10}x_{n}y_{n}+a_{11}y_{n}+a_{12}y_{n}^{2}$

I used it to generate these chaotic galaxies:

Changing the vector of parameters you can obtain other galaxies. Do you want to try?

library(ggplot2)
library(dplyr)
#Generic function
attractor = function(x, y, z)
{
c(z[1]+z[2]*x+z[3]*x^2+ z[4]*x*y+ z[5]*y+ z[6]*y^2,
z[7]+z[8]*x+z[9]*x^2+z[10]*x*y+z[11]*y+z[12]*y^2)
}
#Function to iterate the generic function over the initial point c(0,0)
galaxy= function(iter, z)
{
df=data.frame(x=0,y=0)
for (i in 2:iter) df[i,]=attractor(df[i-1, 1], df[i-1, 2], z)
df %>% rbind(data.frame(x=runif(iter/10, min(df$x), max(df$x)),
y=runif(iter/10, min(df$y), max(df$y))))-> df
return(df)
}
opt=theme(legend.position="none",
panel.background = element_rect(fill="#00000c"),
plot.background = element_rect(fill="#00000c"),
panel.grid=element_blank(),
axis.ticks=element_blank(),
axis.title=element_blank(),
axis.text=element_blank(),
plot.margin=unit(c(-0.1,-0.1,-0.1,-0.1), "cm"))
#First galaxy
z1=c(1.0, -0.1, -0.2,  1.0,  0.3,  0.6,  0.0,  0.2, -0.6, -0.4, -0.6,  0.6)
galaxy1=galaxy(iter=2400, z=z1) %>% ggplot(aes(x,y))+
geom_point(shape= 8, size=jitter(12, factor=4), color="#ffff99", alpha=jitter(.05, factor=2))+
geom_point(shape=16, size= jitter(4, factor=2), color="#ffff99", alpha=jitter(.05, factor=2))+
geom_point(shape=46, size= 0, color="#ffff00")+opt
#Second galaxy
z2=c(-1.1, -1.0,  0.4, -1.2, -0.7,  0.0, -0.7,  0.9,  0.3,  1.1, -0.2,  0.4)
galaxy2=galaxy(iter=2400, z=z2) %>% ggplot(aes(x,y))+
geom_point(shape= 8, size=jitter(12, factor=4), color="#ffff99", alpha=jitter(.05, factor=2))+
geom_point(shape=16, size= jitter(4, factor=2), color="#ffff99", alpha=jitter(.05, factor=2))+
geom_point(shape=46, size= 0, color="#ffff00")+opt
#Third galaxy
z3=c(-0.3,  0.7,  0.7,  0.6,  0.0, -1.1,  0.2, -0.6, -0.1, -0.1,  0.4, -0.7)
galaxy3=galaxy(iter=2400, z=z3) %>% ggplot(aes(x,y))+
geom_point(shape= 8, size=jitter(12, factor=4), color="#ffff99", alpha=jitter(.05, factor=2))+
geom_point(shape=16, size= jitter(4, factor=2), color="#ffff99", alpha=jitter(.05, factor=2))+
geom_point(shape=46, size= 0, color="#ffff00")+opt
#Fourth galaxy
z4=c(-1.2, -0.6, -0.5,  0.1, -0.7,  0.2, -0.9,  0.9,  0.1, -0.3, -0.9,  0.3)
galaxy4=galaxy(iter=2400, z=z4) %>% ggplot(aes(x,y))+
geom_point(shape= 8, size=jitter(12, factor=4), color="#ffff99", alpha=jitter(.05, factor=2))+
geom_point(shape=16, size= jitter(4, factor=2), color="#ffff99", alpha=jitter(.05, factor=2))+
geom_point(shape=46, size= 0, color="#ffff00")+opt



# The Breathtaking 1-Matrix

La luna sale a caminar siguiendo tus pupilas (Ojos color sol, Calle 13)

This is a 5×5 1-matrix:

$\begin{bmatrix} 1 &1 &1 &1 &1 \\ 1 &1 &1 &1 &1 \\ 1 &1 &1 &1 &1 \\ 1 &1 &1 &1 &1 \\ 1 &1 &1 &1 &1 \end{bmatrix}$

And this is a 20×20 1-matrix visualized:

Maybe in some other galaxy, aliens represent matrix in this way.

par(mar = c(1, 1, 1, 1), bg="violetred4")
circlize::chordDiagram(matrix(1, 20, 20),
col="white",
symmetric = TRUE,
transparency = 0.85,
annotationTrack = NULL)


# Gummy Worms

Just keep swimming (Dory in Finding Nemo)

Inspired by this post, I decided to create gummy worms like this:

Or these:

When I was young I used to eat them.

Do you want to try? This is the code:

library(rgl)
library(RColorBrewer)
t=seq(1, 6, by=.04)
f = function(a, b, c, d, e, f, t) exp(-a*t)*sin(t*b+c)+exp(-d*t)*sin(t*e+f)
v1=runif(6,0,1e-02)
v2=runif(6, 2, 3)
v3=runif(6,-pi/2,pi/2)
open3d()
spheres3d(x=f(v1[1], v2[1], v3[1], v1[4], v2[4], v3[4], t),
y=f(v1[2], v2[2], v3[2], v1[5], v2[5], v3[5], t),
z=f(v1[3], v2[3], v3[3], v1[6], v2[6], v3[6], t),


# Visualizing the Gender of US Senators With R and Highmaps

I wake up every morning in a house that was built by slaves (Michelle Obama)

Some days ago I was invited by the people of Highcharts to write a post in their blog. What I have done is a simple but revealing map of women senators of the United States of America. Briefly, this is what I’ve done to generate it:

• read from the US senate website a XML file with senators info
• clean and obtain gender of senators from their first names
• summarize results by state
• join data with a US geojson dataset to create the highmap

You can find details and R code here.

It is easy creating a highcharts using highcharter, an amazing library as genderizeR, the one I use to obtain gender names. I like them a lot.

# Visualizing Stirling’s Approximation With Highcharts

I said, “Wait a minute, Chester, you know I’m a peaceful man”, He said, “That’s okay, boy, won’t you feed him when you can” (The Weight, The Band)

It is quite easy to calculate the probability of obtaining the same number of heads and tails when tossing a coin N times, and N is even. There are $2^{N}$ possible outcomes and only $C_{N/2}^{N}$ are favorable so the exact probability is the quotient of these numbers (# of favorable divided by # of possible).

There is another way to approximate this number incredibly well: to use the Stirling’s formula, which is $1/\sqrt{\pi\cdot N/2}$

This plot represents both calculations for N from 2 to 200:

Although for small values of N, Stirling’s approximation tends to overestimate probability …

… is extremely precise as N becomes bigger:

James Stirling published this amazing formula in 1730. It simplifies the calculus to the extreme and also gives a quick way to obtain the answer to a very interesting question: How many tosses are needed to be sure that the probability of obtaining the same number of heads and tails is under any given threshold? Just solve the formula for N and you will obtain the answer. And, also, the formula is another example of the presence of $pi$ in the most unexpected places, as happens here.

Just another thing: the more I use highcharter package the more I like it.

This is the code:

library(highcharter)
library(dplyr)
data.frame(N=seq(from=2, by=2, length.out = 100)) %>%
mutate(Exact=choose(N,N/2)/2**N, Stirling=1/sqrt(pi*N/2))->data
hc <- highchart() %>%
hc_title(text = "Stirling's Approximation") %>%
hc_subtitle(text = "How likely is getting 50% heads and 50% tails tossing a coin N times?") %>%
hc_xAxis(title = list(text = "N: Number of tosses"), categories = data$N) %>% hc_yAxis(title = list(text = "Probability"), labels = list(format = "{value}%", useHTML = TRUE)) %>% hc_add_series(name = "Stirling", data = data$Stirling*100,  marker = list(enabled = FALSE), color="blue") %>%
hc_add_series(name = "Exact", data = data$Exact*100, marker = list(enabled = FALSE), color="lightblue") %>% hc_tooltip(formatter = JS("function(){return ('<b>Number of tosses: </b>'+this.x+'<br><b>Probability: </b>'+Highcharts.numberFormat(this.y, 2)+'%')}")) %>% hc_exporting(enabled = TRUE) %>% hc_chart(zoomType = "xy") hc  # Women in Orchestras I believe in the truth of fairy-tales more than I believe in the truth in the newspaper (Lotte Reiniger) In my opinion, this graph is a visual demonstration that we live in a male chauvinist world. In this experiment I download the members of ten top orchestras of the world with the amazing rvest package. After cleaning texts, I obtain the gender of names with genderizeR package as I did here. Since I only take into account names genderized with high probability, these numbers cannot be exact. Apart of this, the plot speaks by itself. setwd("YOUR WORKING DIRECTORY HERE") library(rvest) library(dplyr) library(genderizeR) read_html("http://www.berliner-philharmoniker.de/en/orchestra/") %>% html_nodes(".name") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("[\r,\n]"," ", .) %>% gsub("\\s+", " ", .) %>% paste(collapse=" ") %>% findGivenNames() -> berliner saveRDS(berliner, file="berliner.RDS") read_html("https://www.concertgebouworkest.nl/en/musicians") %>% html_nodes(".u-padding--b2") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("\\s+", " ", .) %>% paste(collapse=" ") %>% findGivenNames() -> rco saveRDS(rco, file="rco.RDS") read_html("http://www.philharmonia.spb.ru/en/about/orchestra/zkrasof/contents/") %>% html_nodes(".td") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("[\r,\n]"," ", .) %>% gsub("\\s+", " ", .) %>% .[23] %>% findGivenNames() -> spb saveRDS(spb, file="spb.RDS") read_html("http://ocne.mcu.es/conoce-a-la-ocne/orquesta-nacional-de-espana/componentes/") %>% html_nodes(".col-main") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("[\r,\n]"," ", .) %>% gsub("\\s+", " ", .) %>% gsub("([[:lower:]])([[:upper:]][[:lower:]])", "\\1 \\2", .) %>% findGivenNames() -> one saveRDS(one, file="one.RDS") read_html("http://www.gewandhausorchester.de/en/orchester/") %>% html_nodes("#content") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("[\r,\n]"," ", .) %>% gsub("\\s+", " ", .) %>% findGivenNames() -> leipzig saveRDS(leipzig, file="leipzig.RDS") read_html("http://www.wienerphilharmoniker.at/orchestra/members") %>% html_nodes(".ModSuiteMembersC") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("[\r,\n,\t,*]"," ", .) %>% gsub("\\s+", " ", .) %>% gsub("([[:lower:]])([[:upper:]][[:lower:]])", "\\1 \\2", .) %>% paste(collapse=" ") %>% .[-18] %>% findGivenNames() -> wiener saveRDS(wiener, file="wiener.RDS") read_html("http://www.laphil.com/philpedia/orchestra-roster") %>% html_nodes(".view-content") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("\\s+", " ", .) %>% gsub("(?% .[1] %>% findGivenNames() -> laphil saveRDS(laphil, file="laphil.RDS") read_html("http://nyphil.org/about-us/meet/musicians-of-the-orchestra") %>% html_nodes(".resp-tab-content-active") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("[\r,\n]"," ", .) %>% gsub("\\s+", " ", .) %>% gsub("(?% findGivenNames() -> nyphil saveRDS(nyphil, file="nyphil.RDS") urls=c("http://lso.co.uk/orchestra/players/strings.html", "http://lso.co.uk/orchestra/players/woodwind.html", "http://lso.co.uk/orchestra/players/brass.html", "http://lso.co.uk/orchestra/players/percussion-harps-and-keyboards.html") sapply(urls, function(x) { read_html(x) %>% html_nodes(".clearfix") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("[\r,\n,\t,*]"," ", .) %>% gsub("\\s+", " ", .) }) %>% paste(., collapse=" ") %>% findGivenNames() -> lso saveRDS(lso, file="lso.RDS") read_html("http://www.osm.ca/en/discover-osm/orchestra/musicians-osm") %>% html_nodes("#content-column") %>% html_text(trim=TRUE) %>% iconv("UTF-8") %>% gsub("[\r,\n]"," ", .) %>% gsub("\\s+", " ", .) %>% findGivenNames() -> osm saveRDS(osm, file="osm.RDS") rbind(c("berliner", "Berliner Philharmoniker"), c("rco", "Royal Concertgebouw Amsterdam"), c("spb", "St. Petersburg Philharmonic Orchestra"), c("one", "Orquesta Nacional de España"), c("leipzig", "Gewandhaus Orchester Leipzig"), c("wiener", "Wiener Philarmoniker"), c("laphil", "The Los Angeles Philarmonic"), c("nyphil", "New York Philarmonic"), c("lso", "London Symphony Orchestra"), c("osm", "Orchestre Symphonique de Montreal")) %>% as.data.frame()-> Orchestras colnames(Orchestras)=c("Id", "Orchestra") list.files(getwd(),pattern = ".RDS") %>% lapply(function(x) readRDS(x) %>% as.data.frame(stringsAsFactors = FALSE) %>% cbind(Id=gsub(".RDS", "", x)) ) %>% do.call("rbind", .) -> all all %>% mutate(probability=as.numeric(probability)) %>% filter(probability > 0.9 & count > 15) %>% filter(!name %in% c("viola", "tuba", "harp")) %>% group_by(Id, gender) %>% summarize(Total=n())->all all %>% filter(gender=="female") %>% mutate(females=Total) %>% select(Id, females) -> females all %>% group_by(Id) %>% summarise(Total=sum(Total)) -> total inner_join(total, females, by = "Id") %>% mutate(po_females=females/Total) %>% inner_join(Orchestras, by="Id")-> df library(ggplot2) library(scales) opts=theme(legend.position="none", plot.background = element_rect(fill="gray85"), panel.background = element_rect(fill="gray85"), panel.grid.major.y=element_blank(), panel.grid.major.x=element_line(colour="white", size=2), panel.grid.minor=element_blank(), axis.title = element_blank(), axis.line.y = element_line(size = 2, color="black"), axis.text = element_text(colour="black", size=18), axis.ticks=element_blank(), plot.title = element_text(size = 35, face="bold", margin=margin(10,0,10,0), hjust=0)) ggplot(df, aes(reorder(Orchestra, po_females), po_females)) + geom_bar(stat="identity", fill="darkviolet", width=.5)+ scale_y_continuous(labels = percent, expand = c(0, 0), limits=c(0,.52))+ geom_text(aes(label=sprintf("%1.0f%%", 100*po_females)), hjust=-0.05, size=6)+ ggtitle(expression(atop(bold("Women in Orchestras"), atop("% of women among members", "")))) + coord_flip()+opts  # Playing With Julia (Set) Viento, me pongo en movimiento y hago crecer las olas del mar que tienes dentro (Tercer Movimiento: Lo de Dentro, Extremoduro) I really enjoy drawing complex numbers: it is a huge source of entertainment for me. In this experiment I play with the Julia Set, another beautiful fractal like this one. This is what I have done: • Choosing the function f(z)=exp(z3)-0.621 • Generating a grid of complex numbers with both real and imaginary parts in [-2, 2] • Iterating f(z) over the grid a number of times so zn+1 = f(zn) • Drawing the resulting grid as I did here • Gathering all plots into a GIF with ImageMagick as I did in my previous post: each frame corresponds to a different number of iterations This is the result: I love how easy is doing difficult things in R. You can play with the code changing f(z) as well as color palettes. Be ready to get surprised: library(ggplot2) library(dplyr) library(RColorBrewer) setwd("YOUR WORKING DIRECTORY HERE") dir.create("output") setwd("output") f = function(z,c) exp(z^3)+c # Grid of complex z0 <- outer(seq(-2, 2, length.out = 1200),1i*seq(-2, 2, length.out = 1200),'+') %>% c() opt <- theme(legend.position="none", panel.background = element_rect(fill="white"), plot.margin=grid::unit(c(1,1,0,0), "mm"), panel.grid=element_blank(), axis.ticks=element_blank(), axis.title=element_blank(), axis.text=element_blank()) for (i in 1:35) { z=z0 # i iterations of f(z) for (k in 1:i) z <- f(z, c=-0.621) df=data.frame(x=Re(z0), y=Im(z0), z=as.vector(exp(-Mod(z)))) %>% na.omit() p=ggplot(df, aes(x=x, y=y, color=z)) + geom_tile() + scale_x_continuous(expand=c(0,0))+ scale_y_continuous(expand=c(0,0))+ scale_colour_gradientn(colours=brewer.pal(8, "Paired")) + opt ggsave(plot=p, file=paste0("plot", stringr::str_pad(i, 4, pad = "0"),".png"), width = 1.2, height = 1.2) } # Place the exact path where ImageMagick is installed system('"C:\\Program Files\\ImageMagick-6.9.3-Q16\\convert.exe" -delay 20 -loop 0 *.png julia.gif') # cleaning up file.remove(list.files(pattern=".png"))  # Zooming You don’t have to be beautiful to turn me on (Kiss, Prince) I discovered recently how easy is to create GIFs with R using ImageMagick and I feel like a kid with a new toy. To begin this new era of my life as R programmer I have done this: First of all, read this article: it explains very well how to start doing GIFs from scratch. The one I have done is inspired in this previous post where I take a set of complex numbers to transform and color it using HSV technique. In this case I use this next transformation: f(z)= -Im(z)+(Re(z)+0.5*Im(z))*1i Modifying the range of Real and Imaginary parts of complex numbers I obtain the zooming effect. The code is very simple. Play with it changing the transformation or the animation options. Send me your creations, I would love to see them: library(dplyr) library(ggplot2) dir.create("output") setwd("output") id=1 # label tO name plots for (i in seq(from=320, to=20, length.out = 38)){ z=outer(seq(from = -i, to = i, length.out = 300),1i*seq(from = -i, to = i, length.out = 500),'+') %>% c() z0=z for (k in 1:100) z <- -Im(z)+(Re(z)+0.5*Im(z))*1i df=data.frame(x=Re(z0), y=Im(z0), h=(Arg(z)<0)*1+Arg(z)/(2*pi), s=(1+sin(2*pi*log(1+Mod(z))))/2, v=(1+cos(2*pi*log(1+Mod(z))))/2) %>% mutate(col=hsv(h,s,v)) ggplot(df, aes(x, y)) + geom_tile(fill=df$col)+
scale_x_continuous(expand=c(0,0))+
scale_y_continuous(expand=c(0,0))+
labs(x=NULL, y=NULL)+
theme(legend.position="none",
panel.background = element_rect(fill="white"),
plot.margin=grid::unit(c(1,1,0,0), "mm"),
panel.grid=element_blank(),
axis.ticks=element_blank(),
axis.title=element_blank(),
axis.text=element_blank())
id=id+1
}
system('"C:\\Program Files\\ImageMagick-6.9.3-Q16\\convert.exe" -delay 10 -loop 0 -duplicate 1,-2-1 *.png zooming.gif')
# cleaning up
file.remove(list.files(pattern=".png"))


# The Hype Bubble Map for Dog Breeds

In the whole history of the world there is but one thing that money can not buy… to wit the wag of a dog’s tail (Josh Billings)

In this post I combine several things:

• Simple webscraping to read the list of companion dogs from Wikipedia. I love rvest package to do these things.
• Google Trends queries to download the evolution of searchings of breeds during last 6 months. I use gtrendsR package to do this and works quite well.
• A dinamic Highchart visualization using the awesome highcharter package
• A static ggplot visualization.

The experiment is based on a simple idea: what people search on the Internet is what people do. Can be Google Trends an useful tool to know which breed will become fashionable in the future? To be honest, I don’t really know but I will make my own bet.

What I have done is to extract last 6 months of Google trends of this list of companion breeds. After some simple text mining, I divide the set of names into 5-elements subsets because Google API doesn’t allow searchings with more than 5 items. The result of the query to Google trends is a normalized time series, meaning the 0 – 100 values are relative, not absolute, measures. This is done by taking all of the interest data for your keywords and dividing it by the highest point of interest for that date range. To make all 5-items of results comparable I always include King Charles Spaniel breed in all searchings (as a kind of undercover agent I will use to compare searching levels). The resulting number is my “Level” Y-Axis of the plot. I limit searchings to code=”0-66″ which is restrict results to Animals and pets category. Thanks, Philippe, for your help in this point. I also restrict rearchings To the United States of America.

There are several ways to obtain an aggregated trend indicator of a time series. My choice here was doing a short moving average order=2 to the resulting interest over time obtained from Google. The I divide the weekly variations by the smoothed time series. The trend indicator is the mean of these values. To obtains a robust indicator, I remove outliers of the original time series. This is my X-axis.

This is how dog breeds are arranged with respect my Trend and Level indicators:

Inspired by Gartner’s Hype Cycle of Emerging Technologies I distinguish two sets of dog breeds:

• Plateau of Productivity Breeds (succesful breeds with very high level indicator and possitive trend): Golden Retriever, Pomeranian, Chihuahua, Collie and Shih Tzu.
• Innovation Trigger Breeds (promising dog breeds with very high trend indicator and low level): Mexican Hairless Dog, Keeshond, West Highland White Terrier and German Spitz.

I discovered recently a wonderful package called highcharter which allows you to create incredibly cool dynamic visualizations. I love it and I could not resist to use it to do the previous plot with the look and feel of The Economist. This is an screenshot (reproduce it to play with tits interactivity):

And here comes my prediction. After analyzing the set Innovation Trigger Breeds, my bet is Keeshond will increase its popularity in the nearly future: don’t you think it is lovely?

Photo by Terri BrownFlickr: IMG_4723, CC BY 2.0

Here you have the code:

library(gtrendsR)
library(rvest)
library(dplyr)
library(stringr)
library(forecast)
library(outliers)
library(highcharter)
library(ggplot2)
library(scales)

x="https://en.wikipedia.org/wiki/Companion_dog"
html_nodes("ul:nth-child(19)") %>%
html_text() %>%
strsplit(., "\n") %>%
unlist() -> breeds

breeds=iconv(breeds[breeds!= ""], "UTF-8")

gconnect(usr, psw)

#Reference
ref="King Charles Spaniel"

#New set
breeds=setdiff(breeds, ref)

#Subsets. Do not worry about warning message
sub.breeds=split(breeds, 1:ceiling(length(breeds)/4))

results=list()
for (i in 1:length(sub.breeds))
{
res <- gtrends(unlist(union(ref, sub.breeds[i])),
start_date = Sys.Date()-180,
cat="0-66",
geo="US")
results[[i]]=res
}

trends=data.frame(name=character(0), level=numeric(0), trend=numeric(0))
for (i in 1:length(results))
{
df=results[[i]]$trend lr=mean(results[[i]]$trend[,3]/results[[1]]$trend[,3]) for (j in 3:ncol(df)) { s=rm.outlier(df[,j], fill = TRUE) t=mean(diff(ma(s, order=2))/ma(s, order=2), na.rm = T) l=mean(results[[i]]$trend[,j]/lr)
trends=rbind(data.frame(name=colnames(df)[j], level=l, trend=t), trends)
}
}

trends %>%
group_by(name) %>%
summarize(level=mean(level), trend=mean(trend*100)) %>%
filter(level>0 & trend > -10 & level<500) %>%
na.omit() %>%
mutate(name=str_replace_all(name, ".US","")) %>%
mutate(name=str_replace_all(name ,"[[:punct:]]"," ")) %>%
rename(
x = trend,
y = level
) -> trends
trends$y=(trends$y/max(trends\$y))*100

#Dinamic chart as The Economist
highchart() %>%
hc_title(text = "The Hype Bubble Map for Dog Breeds") %>%
hc_subtitle(text = "According Last 6 Months of Google Searchings") %>%
hc_xAxis(title = list(text = "Trend"), labels = list(format = "{value}%")) %>%
hc_yAxis(title = list(text = "Level")) %>%
hc_add_series(data = list.parse3(trends), type = "bubble", showInLegend=FALSE, maxSize=40) %>%
hc_tooltip(formatter = JS("function(){
return ('<b>Trend: </b>' + Highcharts.numberFormat(this.x, 2)+'%' + '<br><b>Level: </b>' + Highcharts.numberFormat(this.y, 2) + '<br><b>Breed: </b>' + this.point.name)
}"))

#Static chart
opts=theme(
panel.background = element_rect(fill="gray98"),
panel.border = element_rect(colour="black", fill=NA),
axis.line = element_line(size = 0.5, colour = "black"),
axis.ticks = element_line(colour="black"),
panel.grid.major = element_line(colour="gray75", linetype = 2),
panel.grid.minor = element_blank(),
axis.text.y = element_text(colour="gray25", size=15),
axis.text.x = element_text(colour="gray25", size=15),
text = element_text(size=20),
legend.key = element_blank(),
legend.position = "none",
legend.background = element_blank(),
plot.title = element_text(size = 30))
ggplot(trends, aes(x=x/100, y=y, label=name), guide=FALSE)+
geom_point(colour="white", fill="darkorchid2", shape=21, alpha=.3, size=9)+
scale_size_continuous(range=c(2,40))+
scale_x_continuous(limits=c(-.02,.02), labels = percent)+
scale_y_continuous(limits=c(0,100))+
labs(title="The Hype Bubble Map for Dog Breeds",
x="Trend",
y="Level")+
geom_text(data=subset(trends, x> .2 & y > 50), size=4, colour="gray25")+
geom_text(data=subset(trends, x > .7), size=4, colour="gray25")+opts